Scaling Up Solar Power
Posted by Big Gav in applied materials, solar power, solar pv, thin film solar
Technology Review has an article on Applied Materials' efforts to expand solar manufacturing capability - Scaling Up Solar Power.
In 2006, semiconductor-equipment giant Applied Materials got into the solar-power market in a big way. At the company's headquarters in Santa Clara, CA, you can see just how big: a ceiling-mounted crane lifts a piece of glass the size of a garage door onto a table for testing. The glass sheet, covered with a thin orange film of amorphous silicon, is destined to become one of the world's largest solar panels.
Applied Materials developed the equipment to produce these extremely large photovoltaic panels in order to lower the price of solar power--crucial if solar is to compete on price with fossil-fuel electricity. The value of a solar installation comes down to the cost of each watt of power it can produce over the lifetime of a panel, and Applied Materials' panels bring down costs in two ways. The equipment for manufacturing thin-film solar cells operates more efficiently when the panels are bigger. And larger modules need less hardware and labor to wire them together and support them.
Applied Materials, which was already the largest equipment supplier to the semiconductor and liquid-crystal-display industries, brought its expertise to solar power in 2006. The company's photovoltaics and its display backplanes are both based on glass panels coated with amorphous silicon. Its production facilities were already set up to make those panels in 10 sizes, so achieving the best cost per watt was simply a matter of picking the right surface area, says Jim Cushing, senior director of the photovoltaic-equipment line. The result was "by far the fastest ramp to production in the PV industry," he says--from lab to market in just under two years.
Applied Materials now sells a complete set of equipment for transforming large glass panels into thin-film solar cells, transporting it to manufacturers in several shipping containers. The company claims that each factory using its equipment can produce enough solar cells every year to generate 80 megawatts of power, enough to provide energy for 35,000 U.S. homes during peak hours of electricity use.