Renewables Hit the Big Time  

Posted by Big Gav

REW has a look at some of the largest renewable energy projects on the drawing board - Renewables Hit the Big Time.

Once upon a time, not too long ago, renewable-energy projects sized in kilowatts (kW) were considered large. The biggest solar array in 1963 had a mere 242 watts of capacity, and was installed on a lighthouse in Japan. Wind power, which took off more quickly, reached its first 100-kilowatt system in 1931, in Yalta, then part of the Soviet Union. And at that time, wave and tidal power plants were still twinkles in researchers' eyes.

But renewable-energy projects have grown inexorably larger, from kW-size systems to megawatt-size systems and now to gigawatt-size systems. “It’s just the natural progression of what’s happened to renewable energy,” said Clean Edge principal Ron Pernick, a firm that picked “megaprojects” as one of its top five trends for 2010. Starting with 150-kW wind turbines at Altamont Pass in California, one of the first U.S. wind projects, turbines have grown to 3.5 MW and even 5 MW today, he said, and solar projects have expanded from off-grid homes to commercial and industrial buildings and now to utility-scale solar farms.

The gigantic renewable systems in the works today match – and in some cases even exceed – the size and scope of some conventional fossil-fuel power plants. If they materialize, these projects will represent a major turning point, as renewable energy becomes just, well…energy. ...

SOLAR: Desertec, North Africa and the Middle East — 100 GW

At a scale that spans three continents, Desertec may well be the most ambitious renewable-energy project ever proposed. The concept seems simple enough: huge concentrating solar-thermal projects in the Sahara Desert and other sunny areas in Africa and the Middle East will supply the whole region, including Europe, Africa and the Middle East, with electricity via high-voltage direct-current transmission lines. Wind farms on the coast of Europe and Africa, as well as geothermal, photovoltaic, hydropower and biomass projects, mainly in Europe, will help balance out the grid’s power supply, but the concentrating solar-thermal projects will make up the largest piece — 100 GW, or the equivalent of 100 nuclear power stations.

But putting together such a vast project, really made up of dozens (or even hundreds) of separate projects connected by the all-encompassing intercontinental transmission lines, is anything but simple. The challenges can hardly be overstated. Creating such a large grid — agreeing on electricity standards across, not only cities and provinces, but different countries and even continents — and hashing out how to share the costs and benefits of building, maintaining and managing it is a gargantuan task rife with political landmines. Issues of national energy security are involved. The logistics of building so much solar power, of getting the materials, the people and the planning in place, is nearly unfathomable. And then there’s the cost: an estimated $555 billion.

The project might sound like nothing but a hazy dream, unlikely to materialize, except for the fact that a consortium of a dozen big companies, including Siemens, Munich Re, E.ON, RWE and Deutsche Bank, last year signed an agreement to try to raise the money. That’s not money in the bank, however. Aside from an expected 1 billion euros from the European Union, it will take plenty of government and private funding to make the project happen, and the donation buttons on the website make it clear the Desertec foundation is collecting wherever it can. The consortium doesn’t even plan to complete the plan to raise the money until 2012. And even with the funding, the project is expected to take decades, with the goal of completion by 2050.

WIND: Dogger Bank, UK — 9 GW

Moving wind-power projects offshore opens up vast amounts of space and also the potential to take advantage of steadier, faster-moving wind. The largest such project in the pipeline today is the Dogger Bank development, which is part of the United Kingdom’s third round of offshore wind licensing, according to EER. The project, with a whopping target installation capacity of 9 GW — and the potential for some 13 GW — blows away the current largest wind farm, a 782-megawatt onshore farm in Roscoe, Texas, that was completed in October 2009.

Forewind, a consortium of major energy companies including Scottish and Southern Energy, RWE Innogy’s RWE npower Renewables subsidiary, Statoil and Statkraft, won the license to develop the Dogger Bank zone in January. The site is 3343 square miles large, 77 to 150 miles from shore, with depths of between 59 and 206 feet, and its unparalleled size, distance and depth create a number of logistical challenges in constructing the project and connecting it to the grid. Make no mistake, this project is years away from completion. Forewind hasn’t had set a target opening date, but has said it plans to make initial investment decisions about the project in 2014.

TIDAL: Incheon, South Korea — 1.32 GW

Completed in 1966, the first tidal power plant in the world, France’s 240-MW Rance plant, remains the largest today. Now South Korea is planning a project more than five times as large in the Incheon Bay. GS Engineering and Construction Corp. (GS E&C), a publicly traded company based in nearby Seoul, said in January that it plans to begin building the Incheon tidal plant in the second half of next year, if regulators approve the project. Korea Hydro & Nuclear Power Co. will run the plant, expected to cost $3.4 billion and start operations in 2017. The project involves a barrage, or an ocean dam, which traps water in a basin and uses turbines to make electricity from the water-level difference created by the tides.

As countries aim to get more electricity from renewable sources, it’s possible that another project, the U.K.’s proposed Severn Barrage, could surpass the South Korean plant. The project, which could install up to 10 miles of dams and sluice gates across the Severn Estuary, has been bandied about for nearly 30 years and a timeline remains uncertain. The government is considering five different ideas for the barrage, ranging from 1.05 to 8.6 GW in capacity, as well as three alternate concepts.


Post a Comment


Locations of visitors to this page

blogspot visitor
Stat Counter

Total Pageviews




Blog Archive


australia (618) global warming (423) solar power (397) peak oil (355) renewable energy (302) electric vehicles (250) wind power (194) ocean energy (165) csp (159) solar thermal power (145) geothermal energy (144) energy storage (142) smart grids (140) oil (139) solar pv (138) tidal power (137) coal seam gas (131) nuclear power (129) china (120) lng (116) iraq (113) geothermal power (112) green buildings (111) natural gas (110) agriculture (92) oil price (80) biofuel (78) wave power (73) smart meters (72) coal (70) uk (69) electricity grid (67) energy efficiency (64) google (58) bicycle (51) internet (51) surveillance (50) big brother (49) shale gas (49) food prices (48) tesla (46) thin film solar (42) biomimicry (40) canada (40) scotland (38) ocean power (37) politics (37) shale oil (37) new zealand (35) air transport (34) algae (34) water (34) arctic ice (33) concentrating solar power (33) saudi arabia (33) queensland (32) california (31) credit crunch (31) bioplastic (30) offshore wind power (30) population (30) cogeneration (28) geoengineering (28) batteries (26) drought (26) resource wars (26) woodside (26) bruce sterling (25) censorship (25) cleantech (25) ctl (23) limits to growth (23) carbon tax (22) economics (22) exxon (22) lithium (22) buckminster fuller (21) distributed manufacturing (21) iraq oil law (21) coal to liquids (20) indonesia (20) origin energy (20) brightsource (19) rail transport (19) ultracapacitor (19) santos (18) ausra (17) collapse (17) electric bikes (17) michael klare (17) atlantis (16) cellulosic ethanol (16) iceland (16) lithium ion batteries (16) mapping (16) ucg (16) bees (15) concentrating solar thermal power (15) ethanol (15) geodynamics (15) psychology (15) al gore (14) brazil (14) bucky fuller (14) carbon emissions (14) fertiliser (14) matthew simmons (14) ambient energy (13) biodiesel (13) cities (13) investment (13) kenya (13) public transport (13) big oil (12) biochar (12) chile (12) desertec (12) internet of things (12) otec (12) texas (12) victoria (12) antarctica (11) cradle to cradle (11) energy policy (11) hybrid car (11) terra preta (11) tinfoil (11) toyota (11) amory lovins (10) fabber (10) gazprom (10) goldman sachs (10) gtl (10) severn estuary (10) volt (10) afghanistan (9) alaska (9) biomass (9) carbon trading (9) distributed generation (9) esolar (9) four day week (9) fuel cells (9) jeremy leggett (9) methane hydrates (9) pge (9) sweden (9) arrow energy (8) bolivia (8) eroei (8) fish (8) floating offshore wind power (8) guerilla gardening (8) linc energy (8) methane (8) nanosolar (8) natural gas pipelines (8) pentland firth (8) relocalisation (8) saul griffith (8) stirling engine (8) us elections (8) western australia (8) airborne wind turbines (7) bloom energy (7) boeing (7) chp (7) climategate (7) copenhagen (7) scenario planning (7) vinod khosla (7) apocaphilia (6) ceramic fuel cells (6) cigs (6) futurism (6) jatropha (6) local currencies (6) nigeria (6) ocean acidification (6) somalia (6) t boone pickens (6) space based solar power (5) varanus island (5) garbage (4) global energy grid (4) kevin kelly (4) low temperature geothermal power (4) oled (4) tim flannery (4) v2g (4) club of rome (3) norman borlaug (2) peak oil portfolio (1)