Bionics: Energy Efficiency, Nature-Style  

Posted by Big Gav

IDFuel has an interesting post up about using Nature as the model for designs that are more energy efficient.

With peak oil looking more and more real, and gas prices climbing higher, designers, politicians, and people everywhere are looking for ways to maximize energy usage. There is one organization who has been wrestling with this issue for the length of it's existence. Like so many other things, before cars, before cities, before humans, nature was fighting to fit as many animals and plants into as small a space as possible. And now that we get to plan how products fit into our energy and market spaces, we can take some cues from her.

They also link to an excellent story in The Guardian about new developments in wind turbine design and siting (also noted at TreeHugger).

The Aerogenerator is descended from what's known as a Darrieus rotor, which resembles an egg whisk in shape, and works something like a sideways water wheel. It was invented by a Frenchman in the 1930s, and developed extensively in the US and Canada in the 1970s. Unlike horizontal-axis designs, vertical-axis turbines can harness wind energy from any direction, and because the moving parts and the generator are at ground level, they are easier to maintain. But building them on a giant scale presented major engineering difficulties, particularly in terms of stability. What the Aerogenerator does in effect is reproduce the effect of a Darrieus rotor, but with much greater stability. Which means that you can build a much bigger turbine without the danger of it tipping over.

"Our engineer thought about the problem and basically took it to pieces and put it back together," says Theo Bird, founder of Windpower Ltd, who is funding the project through a combination of a government grant and the money he was saving to buy a new house. "By being much larger, you can afford to build offshore, where there's more wind. Twelve wind farms of 100 units would meet the UK government's 10% target for renewable sources. And in the future, you could possibly double the power from each turbine by harnessing tidal power beneath the surface."


Beyond making better-looking wind farms, there is also potential for integrating turbines directly into buildings. After all, if nobody wants wind turbines in the countryside, why not put them in the cities? Cities already have high-rise structures in which to incorporate turbines, and they would be far more in tune with a man-made environment than a natural one. Added to which there would be less need to transport the electricity large distances to its users.


A few buildings have attempted to incorporate wind turbines, but so far none have achieved it with any conviction. Richard Rogers proposed an integral turbine for his Tomigaya tower in Tokyo in 1993, but in more recent efforts, such as Terry Farrell's Green Building in Manchester, or Kohn Pedersen Fox's New York Sports and Convention Centre, wind turbines seem to function more as a conspicuous signifier of environmental credentials than a significant solution to energy requirements.
Going the whole hog, though, a European Commission-sponsored organisation named Project Web (Wind Energy for the Built Environment) has investigated in detail a purpose-built wind-powered skyscraper. The aerodynamic form of the twin 50-storey towers funnels the wind into the three giant turbines, which would generate more power than stand-alone turbines. Under the right circumstances, the building could generate nearly all of its own energy needs, according to Sinisa Stankovic of BDSP Partnership, Project Web's environmental engineers.


As energy from fossil fuels becomes more scarce and expensive, the energy performance of buildings can only increase in importance. Battle and others like him are thinking beyond mere environmental responsibility to an era where buildings, and ultimately cities themselves, are net energy producers. "Traditional buildings have been a drain on infrastructure - water, electricity, waste disposal, etc," says Battle. "Really we should be working towards something like an occupied infrastructure, just like windmills were once occupied. It's a paradigm shift in how we see buildings, and it means that architects are going to have to rethink their aesthetic. It's no longer about just responding to cultural and social urban factors. It's a whole different layer of architecture coming through that will begin to change the face of our cities."


Post a Comment


Locations of visitors to this page

blogspot visitor
Stat Counter

Total Pageviews




Blog Archive


australia (618) global warming (423) solar power (397) peak oil (355) renewable energy (302) electric vehicles (250) wind power (194) ocean energy (165) csp (159) solar thermal power (145) geothermal energy (144) energy storage (142) smart grids (140) oil (139) solar pv (138) tidal power (137) coal seam gas (131) nuclear power (129) china (120) lng (116) iraq (113) geothermal power (112) green buildings (111) natural gas (110) agriculture (92) oil price (80) biofuel (78) wave power (73) smart meters (72) coal (70) uk (69) electricity grid (67) energy efficiency (64) google (58) bicycle (51) internet (51) surveillance (50) big brother (49) shale gas (49) food prices (48) tesla (46) thin film solar (42) biomimicry (40) canada (40) scotland (38) ocean power (37) politics (37) shale oil (37) new zealand (35) air transport (34) algae (34) water (34) arctic ice (33) concentrating solar power (33) saudi arabia (33) queensland (32) california (31) credit crunch (31) bioplastic (30) offshore wind power (30) population (30) cogeneration (28) geoengineering (28) batteries (26) drought (26) resource wars (26) woodside (26) bruce sterling (25) censorship (25) cleantech (25) ctl (23) limits to growth (23) carbon tax (22) economics (22) exxon (22) lithium (22) buckminster fuller (21) distributed manufacturing (21) iraq oil law (21) coal to liquids (20) indonesia (20) origin energy (20) brightsource (19) rail transport (19) ultracapacitor (19) santos (18) ausra (17) collapse (17) electric bikes (17) michael klare (17) atlantis (16) cellulosic ethanol (16) iceland (16) lithium ion batteries (16) mapping (16) ucg (16) bees (15) concentrating solar thermal power (15) ethanol (15) geodynamics (15) psychology (15) al gore (14) brazil (14) bucky fuller (14) carbon emissions (14) fertiliser (14) matthew simmons (14) ambient energy (13) biodiesel (13) cities (13) investment (13) kenya (13) public transport (13) big oil (12) biochar (12) chile (12) desertec (12) internet of things (12) otec (12) texas (12) victoria (12) antarctica (11) cradle to cradle (11) energy policy (11) hybrid car (11) terra preta (11) tinfoil (11) toyota (11) amory lovins (10) fabber (10) gazprom (10) goldman sachs (10) gtl (10) severn estuary (10) volt (10) afghanistan (9) alaska (9) biomass (9) carbon trading (9) distributed generation (9) esolar (9) four day week (9) fuel cells (9) jeremy leggett (9) methane hydrates (9) pge (9) sweden (9) arrow energy (8) bolivia (8) eroei (8) fish (8) floating offshore wind power (8) guerilla gardening (8) linc energy (8) methane (8) nanosolar (8) natural gas pipelines (8) pentland firth (8) relocalisation (8) saul griffith (8) stirling engine (8) us elections (8) western australia (8) airborne wind turbines (7) bloom energy (7) boeing (7) chp (7) climategate (7) copenhagen (7) scenario planning (7) vinod khosla (7) apocaphilia (6) ceramic fuel cells (6) cigs (6) futurism (6) jatropha (6) local currencies (6) nigeria (6) ocean acidification (6) somalia (6) t boone pickens (6) space based solar power (5) varanus island (5) garbage (4) global energy grid (4) kevin kelly (4) low temperature geothermal power (4) oled (4) tim flannery (4) v2g (4) club of rome (3) norman borlaug (2) peak oil portfolio (1)