EfficienCity  

Posted by Big Gav in , ,

Greenpeace UK is promoting a "virtual town" called EfficienCity which demonstrates how towns can achieve "lower greenhouse gas emissions, a more secure energy supply, cheaper electricity and heating bills and a whole new attitude towards energy" by decentralising power generation.

While our government promotes the fallacy that we need coal and nuclear to keep the lights on, innovative councils, businesses and individuals are taking the leap into a cleaner, greener future with decentralised energy.

What is decentralised energy? Well, it's pretty much the opposite of our present, outrageously inefficient energy system, which was designed to meet the needs of a society that hadn't even heard of climate change. This centralised system is a shambles - in fact, it would be impossible to invent a less efficient way of generating energy.

The typical power plant in the UK is only 38 per cent efficient. By the time we use electricity in our homes and offices, we've lost nearly 80 per cent of the usable energy inside the fossil fuels we burn. This is mostly because we have two separate energy systems: one for electricity, and another to heat water and buildings. It's news to some, but heat is a far bigger culprit than electricity when it comes to global warming.

For electricity, we burn fossil fuels in a few large power plants, miles away from the homes and offices they supply. Two thirds of the energy available in fossil fuels is lost in the power plant as waste heat (a by-product of electricity generation) and during transmission. Another 13 per cent is lost through inefficient use in our buildings.

For heat, we burn more fossil fuels (mostly natural gas) in boilers in our homes, offices and factories. It's a little bit like putting radiators on the outside of your house instead of inside it; we're burning one lot of fossil fuels for electricity, and another lot for heat, but waste heat is a by-product of electricity generation. Can't we just burn one lot of fuel to generate electricity, and capture the 'waste' heat at the same time?

We can. Combined heat and power or CHP does exactly that.

Combined heat and power

CHP is the heart of an efficient, decentralised energy system like EfficienCity's. It's the most efficient way possible to burn fuel because so little energy is lost as waste heat. That's how CHP plants in Denmark can reach up to 95 per cent efficiency. Because the heat needs to be captured and piped around the local district, CHP plants are usually sited in the towns and cities where the electricity and heat will be used. This makes it more efficient for electricity generation as well as heat; very little energy is lost in transmission.

If we combined the efficiencies of CHP with improved efficiencies in the home (proper insulation say, and minimum efficiency standards for appliances), we'd practically eliminate the profligate wastage of our current system. CHP is also brilliant in the transition from a fossil-fuelled energy system to one based on cleaner, greener fuels like biogas and biomass. CHP plants can run on a variety of fuels, which means that the fuel mix can include fossil fuels like natural gas but, as more cleaner fuels like biogas become more available, they can switch to those.

Pretty much any organic matter can be used to produce biogas; farm waste is the most famous example (thanks to The Archers) but we could be reaping energy from all of our food that ends up as landfill - food makes up about half of our total landfill, where it produces large amounts of methane, another greenhouse gas.

Local renewable energy sources

But decentralised energy isn't all about CHP. There's an abundance of energy out there in our natural world, ready to be harnessed. We could be harvesting energy from the wind, the sun's rays, the ocean, underground springs and even the earth itself. According to the government, just the wind, wave and tidal resources of our windswept island could meet 40 per cent of our energy needs by 2020. In the longer term, the sky's the limit.
A flexible, scalable energy system

Unlike our conventional power plants, decentralised energy is completely scalable and flexible. You can have a tiny CHP plant in a supermarket or an enormous industrial plant like Immingham, which will soon provide as much electricity as Sizewell B. You can have a single wind turbine like the one at Manchester City's stadium or a massive wind farm like the forthcoming London Array. This also means that decentralised energy systems can be installed much faster than huge power plants, and can be tailored to fit local needs.

Energy security

Whereas decentralised systems like EfficienCity's rely on local, diverse energy sources, our current system will soon rely mostly on imported fossil fuels. On top of that, using hundreds of small energy generators instead of a few major ones means there's a far lower risk of system failure; it's far less likely that several small plants will fail at the same time than that one big plant will. If a local decentralised network did fail though, only one small area would be affected, and that area could import from neighbouring areas.

No more energy price hikes

Decentralised energy can also save consumers an enormous amount. Efficiency measures alone can save consumers a whopping £12 billion a year (the government's own figures) and they save more money than they cost to implement. But there are other savings to be made. Although energy from decentralised systems may be more expensive per kilowatt hour than energy from coal, it can actually work out cheaper for the consumer. Why? Because only 37 per cent of the average British electricity bill is for the electricity. The rest goes to propping up the grossly inefficient infrastructure.

And of course, if the UK decoupled itself from the fossil fuel market, we'd be protecting ourselves from the massive price increases of gas, coal and oil, which will inevitably keep coming.

0 comments

Post a Comment

Statistics

Locations of visitors to this page

blogspot visitor
Stat Counter

Total Pageviews

Ads

Books

Followers

Blog Archive

Labels

australia (619) global warming (423) solar power (397) peak oil (355) renewable energy (302) electric vehicles (250) wind power (194) ocean energy (165) csp (159) solar thermal power (145) geothermal energy (144) energy storage (142) smart grids (140) oil (139) solar pv (138) tidal power (137) coal seam gas (131) nuclear power (129) china (120) lng (117) iraq (113) geothermal power (112) green buildings (110) natural gas (110) agriculture (91) oil price (80) biofuel (78) wave power (73) smart meters (72) coal (70) uk (69) electricity grid (67) energy efficiency (64) google (58) internet (50) surveillance (50) bicycle (49) big brother (49) shale gas (49) food prices (48) tesla (46) thin film solar (42) biomimicry (40) canada (40) scotland (38) ocean power (37) politics (37) shale oil (37) new zealand (35) air transport (34) algae (34) water (34) arctic ice (33) concentrating solar power (33) saudi arabia (33) queensland (32) california (31) credit crunch (31) bioplastic (30) offshore wind power (30) population (30) cogeneration (28) geoengineering (28) batteries (26) drought (26) resource wars (26) woodside (26) censorship (25) cleantech (25) bruce sterling (24) ctl (23) limits to growth (23) carbon tax (22) economics (22) exxon (22) lithium (22) buckminster fuller (21) distributed manufacturing (21) iraq oil law (21) coal to liquids (20) indonesia (20) origin energy (20) brightsource (19) rail transport (19) ultracapacitor (19) santos (18) ausra (17) collapse (17) electric bikes (17) michael klare (17) atlantis (16) cellulosic ethanol (16) iceland (16) lithium ion batteries (16) mapping (16) ucg (16) bees (15) concentrating solar thermal power (15) ethanol (15) geodynamics (15) psychology (15) al gore (14) brazil (14) bucky fuller (14) carbon emissions (14) fertiliser (14) matthew simmons (14) ambient energy (13) biodiesel (13) investment (13) kenya (13) public transport (13) big oil (12) biochar (12) chile (12) cities (12) desertec (12) internet of things (12) otec (12) texas (12) victoria (12) antarctica (11) cradle to cradle (11) energy policy (11) hybrid car (11) terra preta (11) tinfoil (11) toyota (11) amory lovins (10) fabber (10) gazprom (10) goldman sachs (10) gtl (10) severn estuary (10) volt (10) afghanistan (9) alaska (9) biomass (9) carbon trading (9) distributed generation (9) esolar (9) four day week (9) fuel cells (9) jeremy leggett (9) methane hydrates (9) pge (9) sweden (9) arrow energy (8) bolivia (8) eroei (8) fish (8) floating offshore wind power (8) guerilla gardening (8) linc energy (8) methane (8) nanosolar (8) natural gas pipelines (8) pentland firth (8) saul griffith (8) stirling engine (8) us elections (8) western australia (8) airborne wind turbines (7) bloom energy (7) boeing (7) chp (7) climategate (7) copenhagen (7) scenario planning (7) vinod khosla (7) apocaphilia (6) ceramic fuel cells (6) cigs (6) futurism (6) jatropha (6) nigeria (6) ocean acidification (6) relocalisation (6) somalia (6) t boone pickens (6) local currencies (5) space based solar power (5) varanus island (5) garbage (4) global energy grid (4) kevin kelly (4) low temperature geothermal power (4) oled (4) tim flannery (4) v2g (4) club of rome (3) norman borlaug (2) peak oil portfolio (1)