Scheduling The Wind  

Posted by Big Gav in ,

Technology Review has an article on the need for better wind speed forecasting to help guide the scheduling of wind power by grid operators. As the amount of energy provided by the winds climbs towards 20% globally, making sure that there is plenty of measuring and monitoring equipment placed in the appropriate locations and feeding data into the grid management systems will become a must.

As wind power becomes more common, its unpredictability becomes more of a problem. Sudden drops in wind speed can send grid operators scrambling to cover the shortfall and even cause blackouts; unexpected surges can leave conventional power plants idling, incurring costs and spewing pollution to no purpose.

To address the problem, power-grid operators are combining hyper-local meteorological data and artificial intelligence to predict when the wind turbines installed on their networks will turn. This month, New York's Independent System Operator (NYISO) announced plans to integrate wind modeling into its grid control schemes by the summer, and the Electric Reliability Council of Texas (ERCOT) plans to fire up a similar system this summer, if not sooner. The California Independent System Operator (Cal-ISO), meanwhile, plans to expand a forecasting program that already covers about a quarter of the state's wind-power capacity.

What makes these modeling systems accurate and affordable is real-time data supplied by the wind farms themselves: wind speed and direction, plus, in many cases, local temperature, barometric pressure, and humidity. Companies that specialize in weather modeling provide software that, over time, learns to correlate this data with power output and recognize the weather conditions that signal more or less power output in the near future. One of these companies, Albany's AWS Truewind, is working with California, New York, and Texas, but its competitors include 3 Tier Environmental Forecast Group; Garrad Hassan, in the United Kingdom; and WindLogics, based in St. Paul.

When wind farms were less common, grid controllers could essentially ignore their varying output, as it was all but indistinguishable from natural fluctuations in consumer use. Throttling conventional power plants up or down kept supply and demand balanced. But those days are passing fast. Take NYISO, which had virtually no wind power to contend with five years ago. Today, it has more than 500 megawatts on its grid and proposals pending that would push that to almost 7,000 megawatts. That's about 17 percent of its current power base.

Texas, which had 4,446 megawatts of wind on its grid by the end of 2007--more than any other state--has already discovered what large-scale wind-power ebbs and flows can do if controllers aren't watching. "We've had some instances recently where we've either had some very high prices in the short-term market because of our inability to forecast the wind, or where we've actually had to declare emergencies because we were concerned about reliability, in part because we couldn't see how much wind was on the system," says Jess Totten, director of electric industry oversight for Texas's Public Utility Commission.

4 comments

Anonymous   says 2:56 AM

It all sounds fixable. That's before you put in flow batteries for dispatchability...

Sure (or you could use compressed air for storage too).

Texas is a fairly good location for large scale CSP too, so I suspect we'll see a lot of that being built up as well (with energy storage embedded).

Anonymous   says 3:20 PM

Hi guys,
I thought the larger the supply across a continent, the more stable the overall averages?

See point 7 on stability of supply, where I try to collect the quotable quotes on wind-grid stability approaching baseload over larger supply chains and super-grids.

Yes - the bigger and more widely interconnected the grid, the more renewables can be used without bothering with storage - there is a trade off.

At the moment the Texas grid is standalone, so it needs storage and agility (based on good information) if the amount of wind power capacity is to be increased.

Post a Comment

Statistics

Locations of visitors to this page

blogspot visitor
Stat Counter

Total Pageviews

Ads

Books

Followers

Blog Archive

Labels

australia (619) global warming (423) solar power (397) peak oil (355) renewable energy (302) electric vehicles (250) wind power (194) ocean energy (165) csp (159) solar thermal power (145) geothermal energy (144) energy storage (142) smart grids (140) oil (139) solar pv (138) tidal power (137) coal seam gas (131) nuclear power (129) china (120) lng (117) iraq (113) geothermal power (112) green buildings (110) natural gas (110) agriculture (91) oil price (80) biofuel (78) wave power (73) smart meters (72) coal (70) uk (69) electricity grid (67) energy efficiency (64) google (58) internet (50) surveillance (50) bicycle (49) big brother (49) shale gas (49) food prices (48) tesla (46) thin film solar (42) biomimicry (40) canada (40) scotland (38) ocean power (37) politics (37) shale oil (37) new zealand (35) air transport (34) algae (34) water (34) arctic ice (33) concentrating solar power (33) saudi arabia (33) queensland (32) california (31) credit crunch (31) bioplastic (30) offshore wind power (30) population (30) cogeneration (28) geoengineering (28) batteries (26) drought (26) resource wars (26) woodside (26) censorship (25) cleantech (25) bruce sterling (24) ctl (23) limits to growth (23) carbon tax (22) economics (22) exxon (22) lithium (22) buckminster fuller (21) distributed manufacturing (21) iraq oil law (21) coal to liquids (20) indonesia (20) origin energy (20) brightsource (19) rail transport (19) ultracapacitor (19) santos (18) ausra (17) collapse (17) electric bikes (17) michael klare (17) atlantis (16) cellulosic ethanol (16) iceland (16) lithium ion batteries (16) mapping (16) ucg (16) bees (15) concentrating solar thermal power (15) ethanol (15) geodynamics (15) psychology (15) al gore (14) brazil (14) bucky fuller (14) carbon emissions (14) fertiliser (14) matthew simmons (14) ambient energy (13) biodiesel (13) investment (13) kenya (13) public transport (13) big oil (12) biochar (12) chile (12) cities (12) desertec (12) internet of things (12) otec (12) texas (12) victoria (12) antarctica (11) cradle to cradle (11) energy policy (11) hybrid car (11) terra preta (11) tinfoil (11) toyota (11) amory lovins (10) fabber (10) gazprom (10) goldman sachs (10) gtl (10) severn estuary (10) volt (10) afghanistan (9) alaska (9) biomass (9) carbon trading (9) distributed generation (9) esolar (9) four day week (9) fuel cells (9) jeremy leggett (9) methane hydrates (9) pge (9) sweden (9) arrow energy (8) bolivia (8) eroei (8) fish (8) floating offshore wind power (8) guerilla gardening (8) linc energy (8) methane (8) nanosolar (8) natural gas pipelines (8) pentland firth (8) saul griffith (8) stirling engine (8) us elections (8) western australia (8) airborne wind turbines (7) bloom energy (7) boeing (7) chp (7) climategate (7) copenhagen (7) scenario planning (7) vinod khosla (7) apocaphilia (6) ceramic fuel cells (6) cigs (6) futurism (6) jatropha (6) nigeria (6) ocean acidification (6) relocalisation (6) somalia (6) t boone pickens (6) local currencies (5) space based solar power (5) varanus island (5) garbage (4) global energy grid (4) kevin kelly (4) low temperature geothermal power (4) oled (4) tim flannery (4) v2g (4) club of rome (3) norman borlaug (2) peak oil portfolio (1)