Better Wind Turbines  

Posted by Big Gav in ,

Technology Review has an article on advances in wind turbine technology - Better Wind Turbines.

ExRo Technologies, a startup based in Vancouver, BC, has developed a new kind of generator that's well suited to harvesting energy from wind. It could lower the cost of wind turbines while increasing their power output by 50 percent.

The new generator runs efficiently over a wider range of conditions than conventional generators do. When the shaft running through an ordinary generator is turning at the optimal rate, more than 90 percent of its energy can be converted into electricity. But if it speeds up or slows down, the generator's efficiency drops dramatically. This isn't a problem in conventional power plants, where the turbines turn at a steady rate, fed by a constant supply of energy from coal or some other fuel. But wind speed can vary wildly. Turbine blades that change pitch to catch more or less wind can help, as can transmissions that mediate between the spinning blades and the generator shaft. But transmissions add both manufacturing and maintenance costs, and there's a limit to how much changing the blade angle can compensate for changing winds.

ExRo's new design replaces a mechanical transmission with what amounts to an electronic one. That increases the range of wind speeds at which it can operate efficiently and makes it more responsive to sudden gusts and lulls. While at the highest wind speeds the blades will still need to be pitched to shed wind, the generator will allow the turbine to capture more of the energy in high-speed winds and gusts. As a result, the turbine could produce 50 percent more power over the course of a year, says Jonathan Ritchey, ExRo's chief technology officer. Indeed, in some locations, the power output could double, says Ed Nowicki, a professor of electrical engineering at the University of Calgary, who has consulted to ExRo.

The generator works on the same principles as many ordinary generators: magnets attached to a rotating shaft create a current as they pass stationary copper coils arrayed around the shaft. In ordinary generators, all of the coils are wired together. In ExRo's generator, in contrast, the individual coils can be turned on and off with electronic switches. At low wind speeds, only a few of the coils will switch on--just enough to efficiently harvest the small amount of energy in low-speed wind. (If more coils were active, they would provide more resistance to the revolving magnets.) At higher wind speeds, more coils will turn on to convert more energy into electricity. The switches can be thrown quickly to adapt to fast-changing wind speeds.

0 comments

Post a Comment

Statistics

Locations of visitors to this page

blogspot visitor
Stat Counter

Total Pageviews

Ads

Books

Followers

Blog Archive

Labels

australia (619) global warming (423) solar power (397) peak oil (355) renewable energy (302) electric vehicles (250) wind power (194) ocean energy (165) csp (159) solar thermal power (145) geothermal energy (144) energy storage (142) smart grids (140) oil (139) solar pv (138) tidal power (137) coal seam gas (131) nuclear power (129) china (120) lng (117) iraq (113) geothermal power (112) green buildings (110) natural gas (110) agriculture (91) oil price (80) biofuel (78) wave power (73) smart meters (72) coal (70) uk (69) electricity grid (67) energy efficiency (64) google (58) internet (50) surveillance (50) bicycle (49) big brother (49) shale gas (49) food prices (48) tesla (46) thin film solar (42) biomimicry (40) canada (40) scotland (38) ocean power (37) politics (37) shale oil (37) new zealand (35) air transport (34) algae (34) water (34) arctic ice (33) concentrating solar power (33) saudi arabia (33) queensland (32) california (31) credit crunch (31) bioplastic (30) offshore wind power (30) population (30) cogeneration (28) geoengineering (28) batteries (26) drought (26) resource wars (26) woodside (26) censorship (25) cleantech (25) bruce sterling (24) ctl (23) limits to growth (23) carbon tax (22) economics (22) exxon (22) lithium (22) buckminster fuller (21) distributed manufacturing (21) iraq oil law (21) coal to liquids (20) indonesia (20) origin energy (20) brightsource (19) rail transport (19) ultracapacitor (19) santos (18) ausra (17) collapse (17) electric bikes (17) michael klare (17) atlantis (16) cellulosic ethanol (16) iceland (16) lithium ion batteries (16) mapping (16) ucg (16) bees (15) concentrating solar thermal power (15) ethanol (15) geodynamics (15) psychology (15) al gore (14) brazil (14) bucky fuller (14) carbon emissions (14) fertiliser (14) matthew simmons (14) ambient energy (13) biodiesel (13) investment (13) kenya (13) public transport (13) big oil (12) biochar (12) chile (12) cities (12) desertec (12) internet of things (12) otec (12) texas (12) victoria (12) antarctica (11) cradle to cradle (11) energy policy (11) hybrid car (11) terra preta (11) tinfoil (11) toyota (11) amory lovins (10) fabber (10) gazprom (10) goldman sachs (10) gtl (10) severn estuary (10) volt (10) afghanistan (9) alaska (9) biomass (9) carbon trading (9) distributed generation (9) esolar (9) four day week (9) fuel cells (9) jeremy leggett (9) methane hydrates (9) pge (9) sweden (9) arrow energy (8) bolivia (8) eroei (8) fish (8) floating offshore wind power (8) guerilla gardening (8) linc energy (8) methane (8) nanosolar (8) natural gas pipelines (8) pentland firth (8) saul griffith (8) stirling engine (8) us elections (8) western australia (8) airborne wind turbines (7) bloom energy (7) boeing (7) chp (7) climategate (7) copenhagen (7) scenario planning (7) vinod khosla (7) apocaphilia (6) ceramic fuel cells (6) cigs (6) futurism (6) jatropha (6) nigeria (6) ocean acidification (6) relocalisation (6) somalia (6) t boone pickens (6) local currencies (5) space based solar power (5) varanus island (5) garbage (4) global energy grid (4) kevin kelly (4) low temperature geothermal power (4) oled (4) tim flannery (4) v2g (4) club of rome (3) norman borlaug (2) peak oil portfolio (1)