Remixing Concrete  

Posted by Big Gav in ,

The New York Times has an article on efforts to produce concrete without emitting large volumes of CO2 - Concrete Is Remixed With Environment in Mind.

Concrete may seem an unlikely material for scientific advances. At its most basic, a block of concrete is something like a fruitcake, but even more leaden and often just as unloved. The fruit in the mix is coarse aggregate, usually crushed rock. Fine aggregate, usually sand, is a major component as well. Add water and something to help bind it all together — eggs in a fruitcake, Portland cement in concrete — mix well, pour into a form and let sit for decades.

Let a lot of it sit. Every year, about a cubic yard of concrete is produced for each of the six-billion-plus people on the planet.

Think of it this way. The stretch of sidewalk in front of your house? That is you and your spouse’s share. That concrete truck rumbling down the street? It holds a yard for each member of the New York Yankees’ starting lineup. Add the Mets and the Red Sox, and you have enough for the typical house foundation and basement floor.

But those are small projects. The St. Anthony Falls Bridge used about 50,000 yards of concrete. Hoover Dam used more than three million. And the Three Gorges project in China contains more than a yard for every man, woman and child in Canada, population 33 million.

All that concrete may seem the same. And the basic product did remain relatively unchanged since the invention of Portland cement in the early 1800s. (The ancient Romans made concrete, too, but from volcanic ash.) Producers have always tinkered with the mix to find the right proportions of concrete’s basic ingredients, but the recipe never varied much.

Now the experimentation is more elaborate, designed to tailor the concrete to the need. Increasingly, that need includes the environment. Aesthetic considerations aside, concrete is environmentally ugly. The manufacturing of Portland cement is responsible for about 5 percent of human-caused emissions of the greenhouse gas carbon dioxide.

“The new twist over the last 10 years has been to try to avoid materials that generate CO2,” said Kevin A. MacDonald, vice president for engineering services of the Cemstone Products Company, the concrete supplier for the I-35W bridge.

In his mixes, Dr. MacDonald replaced much of the Portland cement with two industrial waste products — fly ash, left over from burning coal in power plants, and blast-furnace slag. Both are what are called pozzolans, reactive materials that help make the concrete stronger. Because the CO2 emissions associated with them are accounted for in electricity generation and steel making, they also help reduce the concrete’s carbon footprint. Some engineers and scientists are going further, with the goal of developing concrete that can capture and permanently sequester CO2 from power plants or other sources, so it cannot contribute to the warming of the planet. ...

Some researchers want to eventually eliminate Portland cement entirely and replace it with other cements to produce zero-carbon, or even carbon-negative, concrete.

Portland cement is at the heart of concrete’s environmental problems. About a ton of CO2 is emitted for every ton of cement produced. The basic manufacturing process involves burning limestone and other minerals at about 2,700 degrees Fahrenheit to create an intermediate product called clinker.

“Essentially, we’re trying to make the same minerals that they did in 1825,” said Mr. Stehly, who is head of a committee addressing sustainability issues at the American Concrete Institute.

The cement industry, particularly in the United States and Europe, has reduced CO2 emissions through the use of more efficient kilns and processes, and is now allowed to add some ground unburned limestone to the clinker, reducing the actual cement in the mix. But about half of the CO2 from cement cannot be eliminated — it is produced in the reaction, called calcination, that occurs as the limestone (which consists of calcium carbonate) is being burned.

So to reduce concrete’s carbon footprint to near zero or less, different approaches are needed. Novacem, a British startup, is developing a cement that does not use carbonates and can make concrete that absorbs carbon dioxide. Carbon Sense Solutions, in Halifax, Nova Scotia, wants to bubble CO2 through wet cement, sequestering the gas through carbonation (a process that occurs naturally, though very slowly, under normal conditions).

At a site adjacent to a gas-fired electricity generation plant in Moss Landing, Calif., the Calera Corporation is developing a process to bubble power plant flue gases through seawater or other brackish water, using the CO2 in the gases to precipitate carbonate minerals for use as cement or aggregates in concrete. The process mimics, to some extent, what corals and other calcifying marine organisms do.

Calera calculates that producing a ton of these minerals consumes half a ton of CO2, so the resulting concrete could potentially be carbon negative — sequestering carbon dioxide permanently.

Brent R. Constantz, the company’s founder, has a background in cements, having made specialty products for use in orthopedic surgery. But he does not describe Calera as a cement company. “We’re primarily driven by the need to capture large amounts of CO2 and sequester it,” he said.

The company probably will begin by making aggregate, because the barriers to making a commercially acceptable product are lower than with cement. Even with aggregate, any new product must meet standards and must be accepted by the concrete industry, which can be conservative. “Any time you introduce anything new,” Dr. Constantz said, “it’s a challenge.”

0 comments

Post a Comment

Ads

Ads

Statistics

Locations of visitors to this page

blogspot visitor
Stat Counter

Total Pageviews

Ads

Books

Followers

News

Loading...

Blog Archive

Labels

australia (583) global warming (366) solar power (339) peak oil (322) electric vehicles (193) renewable energy (185) wind power (173) ocean energy (156) csp (144) geothermal energy (142) smart grids (139) solar thermal power (133) tidal power (133) coal seam gas (127) nuclear power (122) oil (116) lng (112) geothermal power (111) solar pv (111) china (109) iraq (108) energy storage (105) green buildings (104) natural gas (102) agriculture (85) oil price (77) biofuel (76) smart meters (72) wave power (68) electricity grid (63) energy efficiency (63) uk (63) google (55) coal (53) internet (51) surveillance (49) food prices (48) shale gas (48) bicycle (47) big brother (47) thin film solar (41) canada (39) biomimicry (38) ocean power (37) scotland (36) new zealand (35) air transport (34) algae (34) water (34) shale oil (33) queensland (32) credit crunch (31) politics (31) bioplastic (30) concentrating solar power (30) california (29) geoengineering (28) offshore wind power (28) population (28) cogeneration (27) saudi arabia (27) resource wars (26) arctic ice (25) batteries (25) bruce sterling (25) censorship (25) cleantech (25) woodside (25) drought (24) tesla (24) ctl (23) economics (22) carbon tax (20) coal to liquids (20) distributed manufacturing (20) indonesia (20) iraq oil law (20) limits to growth (20) origin energy (20) brightsource (19) buckminster fuller (19) rail transport (19) ultracapacitor (19) santos (18) ausra (17) exxon (17) lithium (17) cellulosic ethanol (16) collapse (16) electric bikes (16) mapping (16) michael klare (16) ucg (16) atlantis (15) bees (15) geodynamics (15) iceland (15) psychology (15) concentrating solar thermal power (14) ethanol (14) fertiliser (14) al gore (13) ambient energy (13) biodiesel (13) brazil (13) carbon emissions (13) cities (13) investment (13) kenya (13) biochar (12) bucky fuller (12) internet of things (12) matthew simmons (12) otec (12) public transport (12) texas (12) victoria (12) chile (11) cradle to cradle (11) desertec (11) energy policy (11) lithium ion batteries (11) terra preta (11) amory lovins (10) fabber (10) gazprom (10) goldman sachs (10) gtl (10) hybrid car (10) severn estuary (10) tinfoil (10) toyota (10) volt (10) alaska (9) biomass (9) carbon trading (9) distributed generation (9) esolar (9) fuel cells (9) jeremy leggett (9) pge (9) sweden (9) afghanistan (8) antarctica (8) arrow energy (8) big oil (8) eroei (8) floating offshore wind power (8) four day week (8) guerilla gardening (8) linc energy (8) methane (8) methane hydrates (8) nanosolar (8) natural gas pipelines (8) pentland firth (8) relocalisation (8) us elections (8) western australia (8) bloom energy (7) boeing (7) chp (7) climategate (7) copenhagen (7) fish (7) stirling engine (7) vinod khosla (7) airborne wind turbines (6) apocaphilia (6) bolivia (6) ceramic fuel cells (6) cigs (6) futurism (6) jatropha (6) local currencies (6) nigeria (6) ocean acidification (6) saul griffith (6) scenario planning (6) somalia (6) t boone pickens (6) space based solar power (5) varanus island (5) garbage (4) kevin kelly (4) low temperature geothermal power (4) oled (4) tim flannery (4) v2g (4) club of rome (3) global energy grid (2) norman borlaug (2) peak oil portfolio (1)