Wired for Progress  

Posted by Big Gav in ,

The Campaign For American Progress has a plan for Wired for Progress. Its a couple of months old but I'm collecting stories on expanding the grid and increasing its intelligence this year...

The United States stands at a crossroads. The convergence of a deep economic recession, high unemployment, energy insecurity, and a looming climate crisis demands decisive action. Our country is embarking on an economic recovery plan of historic proportions. Investments in our public infrastructure will be made to get the economy moving, but we need to make sure we get the economy moving in the right direction. Jump-starting economic activity is only the start. The future of our nation’s competitive economic advantage and our long-term prosperity rests on the choices we make now—in particular, whether we build a modernized infrastructure for jobs and growth that uses resources wisely, anticipates the coming demand for low-carbon energy, and captures new opportunities for innovation and improved productivity.

Inaction today presents very real and growing costs. To allow a climate crisis to proceed unchecked will directly harm people’s lives and the prosperity of the global economy. Global warming presents the threat of lost agricultural productivity, drought and reduced supplies of fresh drinking water, the migration of environmental refugees (creating new global conflicts), and substantial economic damages and lost property for coastal communities. At the same time, our nation’s growing reliance on oil is a major national security concern. During the 1973 oil embargo orchestrated by the Organization of Petroleum Exporting Countries, the United States imported less than a third of its oil needs, yet constraints on supply at the time created economic, social, and foreign policy disruptions. Today, we import nearly 70 percent of our oil—at a cost of $478 billion dollars in 2008 alone—representing a major contribution to our national trade imbalance.

Yet solutions to these mounting crises offer real opportunity as well. Because buildings contribute fully 43 percent of our nation’s CO2 emissions, beating global warming will require that we retrofit millions of homes for energy efficiency, stimulating demand for construction jobs and advanced technology. Reducing oil consumption will require a renewed commitment to the fuel economy of our cars and trucks, but also the electrification of our passenger fleet through plug-in hybrid cars, revival of our automotive industry, and the conversion of long-haul trucks to run on domestic natural gas or advanced biofuels. All of these solutions will require new investments in more modern and productive infrastructure and manufacturing capacity—creating stronger communities that rely on the skills of America’s workers to build a more efficient and competitive economy.

In short, the answer to our economic, energy security, and environmental crises lies in rebuilding America—creating jobs and laying the foundation for sustainable long-term growth. Today there is plenty to fix. Our country’s entire infrastructure is in disrepair from years of neglect and disinvestment. The American Society of Civil Engineers has given the United States a “D” in infrastructure maintenance, citing more than $2.2 trillion of deferred and neglected investments in our roads, bridges, transit, schools, storm water, and energy systems.1 This failure to invest over the past several decades threatens U.S. industry, imposes costs on businesses and workers, and causes preventable harm to our communities. While the costs of inaction are staggering, the opportunity to rebuild the foundations of our economy and our public infrastructure is equally inspiring. Reconstruction must become a national priority no less urgent than the Marshall Plan.

How the grid is managedNowhere is this more evident than in our energy system, and particularly our electricity transmission and distribution grid. Largely unchanged in generations, we are now using yesterday’s technologies to power an increasingly global 21st-century economy. Previous waves of investment in electricity infrastructure were essential to building the global economic and industrial leadership that was the hallmark of the U.S. economy in the last century. As local electricity grids evolved into ever larger regional networks to connect vast swaths of the country in a complex grid system, energy became ever cheaper and more reliable.

The results? Large, central-station generating plants used abundant coal reserves to power the steel, auto, and other manufacturing industries that provided steady employment for millions in the Midwest. Investments in hydroelectric dams created inexpensive power and brought an aluminum and aerospace industry to the Pacific Northwest. And rural electrification ensured that the benefits of access to reliable and affordable energy brought economic development to every corner of the country as a fundamental principle of American fairness—from remote communities in Appalachia to the rural South, the Great Plains, and the Southwest. Forward-thinking investments in public infrastructure and dependable access to energy have touched every state in America.

Power lines where renewable energy isn’tYet, these early-20th-century investments in our electric grid system have not kept pace with today’s global economy. Today’s grid cannot respond effectively to the most pressing new challenges we now face—from terrorism to global warming to ever-rising demand. Nor is our current electricity grid capable of capturing the opportunity created by recent advances in information technology; exciting new tools for producing radical gains in energy efficiency, reliability, and security; or the deployment of clean renewable energy at the scale needed to meet the clean-energy demands of a new century.

That’s why it is so important today to reinvigorate our economy by building new generation, transmission, and distribution systems for efficient use of low-carbon electricity. The transformation of our increasingly outmoded electricity infrastructure around the platforms of efficiency, security, reliability, and reduced carbon emissions will boost U.S. innovation and job creation in coming decades. Building a national clean-energy smart grid will create new markets, foster new businesses and business models, put people back to work in construction and manufacturing, and lay the foundation for long-term, sustainable economic growth.

This task will be daunting. As presently configured, the U.S. electric transmission and distribution system faces three major hurdles. First, we face a problem of geography and planning. The current high-voltage transmission grid imposes important constraints on the deployment of new renewable energy such as wind, solar, and geothermal power because it simply does not currently go where many of these renewable energy resources will be developed. Second, congestion and bottlenecks hurt the reliability of the grid overall, and particularly where it is needed to move large volumes of new power from remote generation to major loads.

Third, the monitoring and control technology on both transmission and distribution networks is weak. The lack of smart technology to provide utilities and consumers with better information in real time hurts the security and efficiency of the entire electricity system. The lack of such a modern, smart-grid network slows the spread of new technology such as solar panels on our homes, intelligent appliances to cut our energy bills, or micro-grids to help first responders meet natural disasters.

Although the United States has vast onshore wind resources—more than enough to supply 20 percent of the nation’s electricity demand by 2030, according to a recent Department of Energy study—the best of these wind resources are located primarily in remote regions of the country. These areas are generally located far from major centers of electricity demand and have little or no access to the “backbone” extra- high-voltage transmission lines that would be required in order to transmit power efficiently from these regions to major electricity markets.

A similar problem confronts solar power developers, who have identified sparsely populated areas of the desert Southwest as optimal locations for large-scale solar power stations. Absent major investments in extra-high-voltage transmission lines connecting these areas of the country to major markets, it is unlikely that the United States will be able to fully exploit these renewable energy resources at a scale that can significantly contribute to our national appetite for energy. The development of remote geothermal resources faces similar transmission constraints.

Yet just as fundamental as these current limits to bringing new renewable resources online is the sobering reality that our entire transmission grid infrastructure was developed in a pre-digital era for a completely different set of problems than we currently confront. Today’s grid-related challenges are much more diverse than those of the 20th century, and solving them will require a national effort to remake the grid with new technology, new investments, and new economic, regulatory, and political arrangements in order to improve the reliability, security, and efficiency of the electric grid, and to enhance its environmental performance. ...

1 comments

Bob Wallace   says 2:51 AM

Those gray lines on the solar map, why do they not show a connection to the Pacific Intertie - the existing HVDC line that carries hydro electricity from the Northwest to the Southwest?

It's like someone is designing a new city and not building an onramp to the interstate freeway running right through the area....

Post a Comment

Statistics

Locations of visitors to this page

blogspot visitor
Stat Counter

Total Pageviews

Ads

Books

Followers

Blog Archive

Labels

australia (619) global warming (423) solar power (397) peak oil (355) renewable energy (302) electric vehicles (250) wind power (194) ocean energy (165) csp (159) solar thermal power (145) geothermal energy (144) energy storage (142) smart grids (140) oil (139) solar pv (138) tidal power (137) coal seam gas (131) nuclear power (129) china (120) lng (117) iraq (113) geothermal power (112) green buildings (110) natural gas (110) agriculture (91) oil price (80) biofuel (78) wave power (73) smart meters (72) coal (70) uk (69) electricity grid (67) energy efficiency (64) google (58) internet (50) surveillance (50) bicycle (49) big brother (49) shale gas (49) food prices (48) tesla (46) thin film solar (42) biomimicry (40) canada (40) scotland (38) ocean power (37) politics (37) shale oil (37) new zealand (35) air transport (34) algae (34) water (34) arctic ice (33) concentrating solar power (33) saudi arabia (33) queensland (32) california (31) credit crunch (31) bioplastic (30) offshore wind power (30) population (30) cogeneration (28) geoengineering (28) batteries (26) drought (26) resource wars (26) woodside (26) censorship (25) cleantech (25) bruce sterling (24) ctl (23) limits to growth (23) carbon tax (22) economics (22) exxon (22) lithium (22) buckminster fuller (21) distributed manufacturing (21) iraq oil law (21) coal to liquids (20) indonesia (20) origin energy (20) brightsource (19) rail transport (19) ultracapacitor (19) santos (18) ausra (17) collapse (17) electric bikes (17) michael klare (17) atlantis (16) cellulosic ethanol (16) iceland (16) lithium ion batteries (16) mapping (16) ucg (16) bees (15) concentrating solar thermal power (15) ethanol (15) geodynamics (15) psychology (15) al gore (14) brazil (14) bucky fuller (14) carbon emissions (14) fertiliser (14) matthew simmons (14) ambient energy (13) biodiesel (13) investment (13) kenya (13) public transport (13) big oil (12) biochar (12) chile (12) cities (12) desertec (12) internet of things (12) otec (12) texas (12) victoria (12) antarctica (11) cradle to cradle (11) energy policy (11) hybrid car (11) terra preta (11) tinfoil (11) toyota (11) amory lovins (10) fabber (10) gazprom (10) goldman sachs (10) gtl (10) severn estuary (10) volt (10) afghanistan (9) alaska (9) biomass (9) carbon trading (9) distributed generation (9) esolar (9) four day week (9) fuel cells (9) jeremy leggett (9) methane hydrates (9) pge (9) sweden (9) arrow energy (8) bolivia (8) eroei (8) fish (8) floating offshore wind power (8) guerilla gardening (8) linc energy (8) methane (8) nanosolar (8) natural gas pipelines (8) pentland firth (8) saul griffith (8) stirling engine (8) us elections (8) western australia (8) airborne wind turbines (7) bloom energy (7) boeing (7) chp (7) climategate (7) copenhagen (7) scenario planning (7) vinod khosla (7) apocaphilia (6) ceramic fuel cells (6) cigs (6) futurism (6) jatropha (6) nigeria (6) ocean acidification (6) relocalisation (6) somalia (6) t boone pickens (6) local currencies (5) space based solar power (5) varanus island (5) garbage (4) global energy grid (4) kevin kelly (4) low temperature geothermal power (4) oled (4) tim flannery (4) v2g (4) club of rome (3) norman borlaug (2) peak oil portfolio (1)