Do we need nuclear and coal plants for baseload power?
Posted by Big Gav in baseload power, nuclear power, smart grids
Dave Roberts at Grist has some words on the baseload fallacy - Do we need nuclear and coal plants for baseload power? .
On Friday, Matt Yglesias made the point that only socialist state control seems capable of creating a robust nuclear power industry. After all, the only countries building nuke plants these days are the ones where governments are making the decisions. David Frum replied with a series of wildly overbroad assertions ranging from false to highly misleading, with no evidence or links to support them. (Nuclear power has an impressive effect on conservative error-to-word ratios.) Matt replied in turn, and in doing so echoed a familiar misunderstanding:That said, obviously you need a certain amount electricity that can be relied upon irrespective of how windy it is or whether the sun is shining. So I’d happily see the nuclear share of the pie grow at the expense of coal and oil as the provider of that baseload electricity.
This notion has really grabbed the public imagination. It’s become conventional wisdom that the grid can only incorporate a limited amount of renewable energy; ergo, we need coal and nuclear power plants for “baseload” electricity. Clean energy skeptics wave the word “baseload” around like a talisman.
There’s far less to the claim than meets the eye, though. As Amory Lovins points out, it’s a category error: baseload is a characteristic of aggregated demand, not of any particular kind of supply. He distills the counter-argument:Baseload: The electricity system doesn’t rely on any plant’s ability to run continuously; rather, all plants together supply the grid, and the grid serves all loads. That’s necessary because no kind of power plant can run all the time, as Stewart says they must do to meet steady loads. I repeat: there is not and has never been a need for any particular plant or kind of plant to run all the time, and none can. All power plants fail, varying only in their failures’ size, duration, frequency, predictability, and cause. Solar cells’ and windpower’s variation with night and weather is no different from the intermittence of coal and nuclear plants, except that it affects less capacity at once, more briefly, far more predictably, and is no harder and probably easier and cheaper to manage. In short, the ability to serve steady loads is a statistical attribute of all plants on the grid, not an operational requirement for one plant. Variability (predictable failure) and intermittence (unpredictable failure) must be managed by diversifying type and location, forecasting, and integrating with other resources. Utilities do this every day, balancing diverse resources to meet fluctuating demand and offset outages. Even with a largely (or probably a wholly) renewable grid, this is not a significant problem or cost, either in theory or in practice—as illustrated by areas that are already 30-40% wind-powered.
Right now our power system might be characterized as Security Through Oversupply. We’ve built enough power plants to create the maximum level of power we might ever need at a given point in time; but since “peak load” times are relatively brief, most of the time dozens and dozens of large power plants are cycled down, sitting idle. As population and per-capita power use rise, the size of peak load is rising as well. The STO response is to build more plants.
The alternative will be Resilience Through Diversity: just-in-time, just-enough power from multiple, redundant, diverse sources spread over large geographical areas, managed by a reliable, intelligent power grid incorporating distributed storage. Peak load will be shaved by load spreading and efficiency; failures will be localized and self-healing rather than cascading and catastrophic; intelligence will replace brute power.