Plastic gets organic
Posted by Big Gav in bioplastic, green chemistry, plantic
The SMH has a look at the progress being made by bioplastic company Plantic - Fantastic as plastic gets organic.
A revolution in green packaging is being launched from a head office in Altona, as leading British retailer Marks & Spencer has announced that this Christmas its entire Swiss chocolate range will be sold in an innovative Australian company's biodegradable plastic trays.
Plantic Technologies' cutting-edge bioplastic, also called plantic, is made from starch and is not only 100 per cent compostable but also completely dissolves in running water.
It's a pretty neat trick, which has enabled the company founded in 2003 to open sales offices in Germany, Britain and the US, and employ about 50 people worldwide. The global biodegradable plastic packaging market it wants a slice of is estimated by British analyst Visiongain to be worth $US1.6 billion this year.
Helen Roberts, head of packaging at Marks & Spencer, says: ''This is a fantastic step forward for food packaging. We know our customers really want to be responsible, and using plantic means they can enjoy a delicious box of chocolates without the worry of what to do with the leftover tray - they can just throw it on their compost heap.'' ...
Plantic's technology, which involves the use of industrial starch with film-forming properties, was developed from research into plastics by an Australian federal government-funded research group, the Co-operative Research Centre for International Food Manufacture and Packaging Science, involving experts at Swinburne University, the University of Queensland and the CSIRO.
Morris says the research was built on Australia's ability to add value to agricultural crops. ''We don't take the whole crop,'' he says.
''When our starch is produced we take a portion: another portion goes to animal feed; another to compost or fertiliser, so the whole crop is used. There's no waste.''
The fact that the strain of corn used is non-genetically modified has been a big plus in the European market, while the company has also recently expanded its US presence, signing an exclusive distribution deal with Klockner Pentaplast, which is one of the world's leading manufacturers of rigid plastics.
GreenBiz.com has an article looking at some of the characteristics of various bioplastics - The Material Facts About Bioplastics.
Our recent webcast, "A New Life for Plastics: End-of-life Solutions in the Age of Greener Materials," drew a sizeable audience -- and a sizeable number of questions. We only were able to address a handful of them during the webcast, so we asked the three participants -- William Hoffman, environmental scientist in green chemistry at UL Environment; Robert Whitehouse, Director of Applications Development for Metabolix, Inc., a leading bioplastics company; and Kelly Lehrmann, consultant with the German bioplastics firm FKuR -- to respond to some of the remaining questions.
Here are their thoughts on the benefits of bioplastics, the differences among various biobased plastics, the role of municipal waste agencies in creating a composting infrastructure, and other things. ...
What is the best benefit from a bioplastic: the biodegradability or the renewable source reducing the carbon footprint?
William Hoffman: Not all bioplastics are biodegradable. Braskem (Green PE) and PolyOne (ReSound) both produce biobased materials which are not biodegradable. Ultimately, the "right" answer to this question would depend on the application for which the material is designed (and the end-of-life associated with that application). Let's say the material is to be used in a durable application, perhaps an appliance housing where that part needs to last the life of the appliance (approximately 10 years), then biodegradability is not an ideal characteristic. On the other hand, if the material is used in a disposable packaging application, biodegradability would be a desirable characteristic of the end-product since so much single-use plastic packaging end up in landfills.
Robert Whitehouse: The best benefit is a bioplastic that is both biobased and biodegradable. As an example, Mirel™ bioplastics is made from annually renewable resources, corn sugar, and is biodegradable in a wide range of environments including natural soil and water environments, in home and industrial compost facilities where available, and anaerobic digestion. The combination of biobased and biodegradable helps to reduce reliance on petroleum and can help to reduce the amount of waste sent to landfills or incineration.
What about anaerobic degradation in a closed landfill?
WH: Once a landfill is closed, the conditions that encourage biodegradation – recirculating leachate, which carry microbes and elevated moisture levels are removed. Indeed, closed landfills resemble the "dry tombs" that William Rathje studied in his Garbage Project in the 1970s.
RW: Landfills are typically unmanaged with regard to microbial activity and so degradation is very difficult to predict. Managed anaerobic degradation facilities typically take from 20 to 50 days for organic carbon conversion.