Praying for an Energy Miracle  

Posted by Big Gav in

Technology Review has a look at a number of clean energy startups looking to make renewable energy cheap enough to compete with fossil fuels - Praying for an Energy Miracle.

The company's breakthrough is strictly off-limits to outsiders. Work on the technology goes on in an unseen part of the sprawling one-story building, beyond the machine shop, the various testing and fabrication instruments, the large open office space stuffed with cubicles. What a visitor gets to see instead is a thin wafer of silicon that would be familiar to anyone in the solar-power industry. And that's exactly the point. The company's advance is all about reducing the expense of manufacturing conventional solar cells.

In its conference room is a large chart showing the declining cost of electricity produced by solar panels over the last three decades. The slightly bumpy downward-­sloping line is approaching a wide horizontal swath labeled "grid parity"—the stage at which electricity made using solar power will be as cheap as power generated from fossil fuels. It is the promised land for renewable power, and the company, 1366 Technologies, believes its improvements in manufacturing techniques can help make it possible for solar power to finally get there.

It's an ambitious target: even though silicon-based photovoltaic cells, which convert sunlight directly to electricity, have been coming down in price for years, they are still too expensive to compete with fossil fuels. As a result, solar power accounts for far less than 1 percent of U.S. electricity production. And 1366 founder Emanuel Sachs, who is the company's chief technology officer and an MIT professor of mechanical engineering, says that even though solar might be "within striking distance" of natural gas, existing solar technology won't be able to compete with coal. "To displace coal will take another level of cost reduction," says Sachs. That's where 1366's breakthrough comes in. The company is developing a way to make thin sheets of silicon without slicing them from solid chunks of the element, a costly chore. "The only way for photovoltaics to compete with coal is with technologies like ours," he says.

Once photovoltaics can compete with coal on price, "the world very much changes," says Frank van Mierlo, the company's CEO. "Solar will become a real part of our energy supply. We can then generate a significant part of our energy from the sun."

In a number of ways, 1366 (the name refers to the average number of watts of solar energy that hit each square meter of Earth over a year) reflects the ambition of a whole generation of energy startups. These companies often refer to "game-changing" technologies that will redefine the economics of non-fossil-fuel energy sources. Many were founded over the last decade, during a boom in venture capital funding for "clean tech"—not only in solar but also in wind, biofuels, and batteries. Many have benefited from increases in federal support for energy research since President Obama took office. Though the companies are working on different technologies, they share a business strategy: to make clean energy sources cheap enough, without any government subsidies, to compete with fossil fuels. At that point, capitalism will kick into high gear, and investors will rush to build a new energy infrastructure and displace fossil fuels—or so the argument goes.

The problem, however, is that we are probably not just a few breakthroughs away from deploying cheaper, cleaner energy sources on a massive scale. Though few question the value of developing new energy technologies, scaling them up will be so difficult and expensive that many policy experts say such advances alone, without the help of continuing government subsidies and other incentives, will make little impact on our energy mix. Regardless of technological advances, these experts are skeptical that renewables are close to achieving grid parity, or that batteries are close to allowing an electric vehicle to compete with gas-powered cars on price and range.

In the case of renewables, it depends on how you define grid parity and whether you account for the costs of the storage and backup power systems that become necessary with intermittent power sources like solar and wind. If you define grid parity as "delivering electricity whenever you want, in whatever volumes you want," says David Victor, the director of the Laboratory on International Law and Regulation at the University of California, San Diego, then today's new renewables aren't even close. And if new energy technologies are going to scale up enough to make a dent in carbon dioxide emissions, he adds, "that's the definition that matters."

Field of Mirrors

Few people have more faith in the power of technology to change the world than Bill Gross. And few entrepreneurs are as familiar with the difficulty of turning clever ideas into commercial technology. In the dot-com era, he and his company Idealab, an incubator that creates and runs new businesses, started up several of the era's hottest firms, only to struggle when the bubble burst.

Gross latched onto the clean-tech craze, founding a company called eSolar in 2007 to work on solar thermal technology (see Q&A, March/April 2010). These days, Web, social-computing, and energy projects are intermingled in Idealab's tightly packed offices in downtown Pasadena, California. In keeping with its dot-com-era heritage, the offices occupy a large loftlike space full of various companies or hope-to-be companies, some of them consisting of no more than a few desks dominated by large computer screens. Somewhere in all the brushed metal, exposed ventilation systems, track lighting, and designer desk chairs is Bill Gross's office, a small glassed-in cubicle.

Like almost every other founder of a renewable-energy startup, Gross gets right to the numbers. Pulling up a screen that compares the costs of energy from various sources, he points out how a technology being developed by eSolar could make solar thermal power less expensive and help it become competitive with fossil fuels. Solar thermal plants produce electricity by using a huge field of mirrors to focus sunlight on a tall central tower, where water is heated to produce steam that generates electricity. Large power plants using the technology can produce electricity more cheaply than ones using silicon solar panels, although the thermal approach is still more expensive than power derived from coal or even wind. Several such plants are operating around the world, and more are being built (see "Chasing the Sun," July/August 2009). In 2006, when the giant California utility PG&E put out a bid for a 300-megawatt solar thermal plant (now being built by a company called BrightSource), Gross got excited and began working with his employees to improve the economics.

Not surprisingly, Gross's solution is based on software. Large solar thermal plants cost more than a billion dollars to build, and one reason for the high cost is that tens of thousands of specially fabricated mirrors have to be precisely arranged so that they focus the sunlight correctly. But what if you used plain mirrors on a simple metal rack and then used software to calibrate them, adjusting each one to optimize its position relative to the sun and the central tower? It would take huge amounts of computing power to manipulate all the mirrors in a utility-scale power plant, but computing power is cheap—far cheaper than paying engineers and technicians to laboriously position the mirrors by hand. The potential savings are impressive, according to Gross; he says that eSolar can install a field of mirrors for half what it costs in other solar thermal facilities. As a result, he expects to produce electricity for approximately 11 cents per kilowatt-hour, enticingly close to the price of power from a fossil-fuel plant.


Post a Comment


Locations of visitors to this page

blogspot visitor
Stat Counter

Total Pageviews




Blog Archive


australia (617) global warming (421) solar power (396) peak oil (353) renewable energy (301) electric vehicles (249) wind power (194) ocean energy (165) csp (158) geothermal energy (144) solar thermal power (144) energy storage (142) smart grids (140) solar pv (138) tidal power (137) oil (136) coal seam gas (131) nuclear power (128) china (118) lng (116) iraq (113) geothermal power (112) green buildings (111) natural gas (110) agriculture (92) oil price (80) biofuel (78) wave power (73) smart meters (72) coal (69) uk (69) electricity grid (67) energy efficiency (64) google (58) bicycle (51) internet (51) surveillance (50) big brother (49) shale gas (49) food prices (48) tesla (46) thin film solar (42) biomimicry (40) canada (40) scotland (38) ocean power (37) politics (37) shale oil (37) new zealand (35) air transport (34) algae (34) water (34) arctic ice (33) concentrating solar power (33) queensland (32) saudi arabia (32) california (31) credit crunch (31) bioplastic (30) offshore wind power (30) population (30) cogeneration (28) geoengineering (28) batteries (26) drought (26) resource wars (26) woodside (26) bruce sterling (25) censorship (25) cleantech (25) ctl (23) limits to growth (23) carbon tax (22) economics (22) exxon (22) lithium (22) buckminster fuller (21) distributed manufacturing (21) iraq oil law (21) coal to liquids (20) indonesia (20) origin energy (20) brightsource (19) rail transport (19) ultracapacitor (19) santos (18) ausra (17) collapse (17) electric bikes (17) michael klare (17) atlantis (16) cellulosic ethanol (16) iceland (16) lithium ion batteries (16) mapping (16) ucg (16) bees (15) concentrating solar thermal power (15) ethanol (15) geodynamics (15) psychology (15) al gore (14) brazil (14) bucky fuller (14) carbon emissions (14) fertiliser (14) ambient energy (13) biodiesel (13) cities (13) investment (13) kenya (13) matthew simmons (13) public transport (13) biochar (12) chile (12) desertec (12) internet of things (12) otec (12) texas (12) victoria (12) big oil (11) cradle to cradle (11) energy policy (11) hybrid car (11) terra preta (11) tinfoil (11) toyota (11) amory lovins (10) antarctica (10) fabber (10) gazprom (10) goldman sachs (10) gtl (10) severn estuary (10) volt (10) afghanistan (9) alaska (9) biomass (9) carbon trading (9) distributed generation (9) esolar (9) four day week (9) fuel cells (9) jeremy leggett (9) methane hydrates (9) pge (9) sweden (9) arrow energy (8) bolivia (8) eroei (8) fish (8) floating offshore wind power (8) guerilla gardening (8) linc energy (8) methane (8) nanosolar (8) natural gas pipelines (8) pentland firth (8) relocalisation (8) saul griffith (8) stirling engine (8) us elections (8) western australia (8) airborne wind turbines (7) bloom energy (7) boeing (7) chp (7) climategate (7) copenhagen (7) scenario planning (7) vinod khosla (7) apocaphilia (6) ceramic fuel cells (6) cigs (6) futurism (6) jatropha (6) local currencies (6) nigeria (6) ocean acidification (6) somalia (6) t boone pickens (6) space based solar power (5) varanus island (5) garbage (4) global energy grid (4) kevin kelly (4) low temperature geothermal power (4) oled (4) tim flannery (4) v2g (4) club of rome (3) norman borlaug (2) peak oil portfolio (1)