Water reduction options for solar thermal technology
Posted by Big Gav in csp, nrel, solar thermal power, water
CSP Today has a look at water consumption in solar thermal power plants - Cooler, smarter options for hot CSP technologies.
NREL's study found that dry cooling would generally achieve a 90-92% decline in water consumption, with an increase in cost for generating electricity of 3-8%, depending on the climate.
“I think that 3-8% range is much smaller than what other people thought the actual impact would be (of dry cooling)," Macknick said. “In past years I had heard talk of 15-20% increases in cost, but that's not what we found."
Non-traditional water sources are the other option with the best potential for applicability at low cost, analysts say. Shallow brackish water and recycled wash water collected from mirror washing are the two options furthest along.
Squeegee clean
NREL has been working with researchers at the University of Colorado-Boulder on ways to reduce the amount of water used to wash CSP mirrors. Current practice usually involves spraying the mirrors with a hose, but a high-pressure spraying system with a squeegee involved could reduce washwater by 90% if it's automated, Macknick says.
While washwater reduction is great, in context it's a drop in the bucket compared to the daily water demand for wet cooling. About 20 to 30 gallons of washwater are used for every Mwh generated, compared to 700 to 900 gallons per Mwh used now for wet cooling.
“I think you definitely will see developers try all options, from using recycled wastewater or shallow brackish water, but there will still be issues with using those," Macknick said. “You may have a performance penalty to pump or treat that water, so I think development will be very site-dependent, and a lot of developers will start trying to locate themselves closer to those sources."
Non-water liquids could become feasible as a cooling source but would add considerably to capital costs, requiring another stage to cool down that liquid, which couldn't simply be evaporated like water. Some researchers are reportedly testing high-pressured carbon dioxide gas or ionized air.
Smarter siting?
Finding further cooling efficiencies may also drive CSP developers to choose sites more carefully. Basic thermodynamics of a CSP plant are based on the steam cycle, with thermal dynamic efficiency defined by inlet and exhaust temperatures. The ideal CSP locale would have clear, sunny skies but cold ambient temperature.
“The high desert area could be more attractive, or areas in Colorado that are 6,000 to 7,000 feet in elevation," Patel said. “But those areas are few and far between, or don't have easy access and grid connection. CSP also likes flat land, and the higher you go the tougher it is to get 200 acres of flat land."
When compared to water usage at coal-fired energy plants in the American southwest that includes water used during the coal mining, transport and cooling at the plant, CSP's wet-cooling system uses less water. And compared to biofuels based on corn or soybean, CSP wet cooling waters less per acre than those agriculture systems. With those points made, CSP uses more water per MW than a combined-cycle gas-fired plant.
“I think there will be some developments in hybrid-cooled systems," Macknick said. “There has to be a clever way we can utilize just a small fraction of the amount of water the wet-cool model uses now to achieve similar results. That's where the potential is at."