Batteries Made Of Salt Water Last 10 Times Longer Than Lead Acid Batteries  

Posted by Big Gav in , ,

The SmartPlanet blog has a post on low cost battery technology from a company called Acquion which uses cheap and plentiful materials - Batteries Made Of Salt Water last 10x Longer.

The company claims (PDF) :

- Costs of less than US$300 per kWh (compared to lead acid batteries at US$200-400)
- A lifetime of 5000+ recharge cycles (compared to lead acid batteries at 500-1000)
- Energy density of around 25 Wh/Litre (compared to lead acid batteries with 50-80 Wh/L)

Jay Whitacre wants to change the world with batteries - and the recipe for change, he believes, is in everyday materials like salt and water.

Although he can geek out on complicated lectures on battery technology, last week at The Compass Summit in Los Angeles, Whitacre told me in much more simple terms about how his battery technology works. Using sodium ions instead of lithium, Whitacre’s batteries have been designed to store energy for the grid.

After spending two years figuring out the ideal chemistry for non-toxic batteries, Carnegie Mellon engineering professor Whitacre spun his technology into a startup company called Aquion Energy in January 2010. Pre-production of the sodium-ion batteries is expected this fall, and the production plant is on track to begin in 2013.

In September, Aquion announced a round of $30 million in funding from Foundation Capital, Kleiner Perkins Caufield & Byer, Advanced Technology Ventures, and Triple Point Capital, to build its first factory. The batteries are designed for stationary applications in residential and buildings. The plan is to start with smaller installations and move into major ones.

Aquion Energy’s technology has received some recognition: Last week, the company won a United Nations award for energy at The World Technology Summit. Even though lithium is a common technology used in iPhones or computers, it’s expensive, it needs organic solvents, and has high purity requirements. The other alternative is lead acid batteries, which are known to release toxic lead.

With that in mind, Pittsburgh-based Aquion Energy is making batteries out of non-toxic materials. The anode is made of carbon, while the cathode is made from manganese oxide. The battery is made of individual units that are put together into 8 batteries of 15V modules.

"Electrical power is the only commodity sold in the world right now without any kind of warehousing. When you plug something into the wall, you immediately pull energy from a generation asset. It’s not stored anywhere. We store data, water, and gas. We do not store electricity. Historically, it’s just been too expensive," Whitacre said.

"For the first time, renewable power sources are competitive with traditional, especially in developing countries," Whitacre said. Lead acid batteries aren’t as good as the manufacture promised. Aquion’s batteries have a much longer life. "We believe we can last 5 to 10 times longer than lead acid at the same price point," he said.

To design batteries that would be competitive, Whitacre found common, cheap materials to use: carbon, manganese, water, and different kinds of cheap plastics. For instance, one of the key ingredients is manganese, which is the cheapest metal oxide on the market. And it’s possible to reconfigure carbon, so it can be taken from corn syrup or other forms of carbon.

"We have been very conscious of manufacturing. It’s about taking cheap materials and being able to reconfigure them," Whitacre said, explaining why the company plans on using food processing, pharmaceutical processing, and other kinds of techniques that aren’t usually found in high-tech manufacturing plants.

3 comments

Anonymous   says 12:42 AM

Remember Water salt batteries already exists:
Smart Grid News
Analysis Smart Grid Storage: GE and FIAMM Target Molten Salt Batteries. But Can They Compete with NGK?
http://www.smartgridnews.com/artman/publish/Technologies_Storage_News/Smart-Grid-Storage-GE-and-FIAMM-Target-Molten-Salt-Batteries-But-Can-They-Compete-with-NGK-2281.html

Anonymous   says 10:36 AM

I find it hard to believe that Manganese Oxide is the cheapest oxide available. There's plenty of Iron Oxide in the world, for instance. But maybe it just doesn't work as well, or it's too flaky or something.

Bob Wallace   says 4:03 PM

"The battery is made of individual units that are put together into 8 batteries of 15V modules."

On their web site Aquion says ~2 volt cells. Perhaps 8 are put together to get an ~ 15v module.

They are also say that they've hit 5,000 cycles with no performance loss and are targeting >20,000 cycles.

If they can pull this off they have an excellent product for less developed parts of the world. A very, very long life battery for the price of a lead acid.

They're also saying 100% recyclable.

It could be a beautiful thing....

Post a Comment

Ads

Ads

Statistics

Locations of visitors to this page

blogspot visitor
Stat Counter

Total Pageviews

Ads

Books

Followers

News

Loading...

Blog Archive

Labels

australia (582) global warming (365) solar power (338) peak oil (321) electric vehicles (193) renewable energy (181) wind power (172) ocean energy (155) csp (144) geothermal energy (142) smart grids (139) solar thermal power (133) tidal power (132) coal seam gas (127) nuclear power (122) oil (116) lng (112) geothermal power (111) solar pv (110) china (109) iraq (108) energy storage (105) green buildings (104) natural gas (102) agriculture (85) biofuel (76) oil price (76) smart meters (72) wave power (68) electricity grid (63) energy efficiency (63) uk (63) google (55) coal (53) internet (51) food prices (48) shale gas (48) surveillance (48) bicycle (47) big brother (47) thin film solar (41) biomimicry (38) canada (38) ocean power (37) scotland (36) new zealand (35) air transport (34) algae (34) water (34) queensland (32) credit crunch (31) politics (31) shale oil (31) bioplastic (30) concentrating solar power (30) california (29) geoengineering (28) offshore wind power (28) population (28) cogeneration (27) saudi arabia (27) resource wars (26) arctic ice (25) batteries (25) censorship (25) cleantech (25) woodside (25) bruce sterling (24) drought (24) tesla (24) ctl (23) economics (22) carbon tax (20) coal to liquids (20) distributed manufacturing (20) indonesia (20) iraq oil law (20) limits to growth (20) origin energy (20) brightsource (19) buckminster fuller (19) rail transport (19) ultracapacitor (19) santos (18) ausra (17) exxon (17) lithium (17) cellulosic ethanol (16) collapse (16) electric bikes (16) mapping (16) michael klare (16) ucg (16) atlantis (15) bees (15) geodynamics (15) iceland (15) psychology (15) concentrating solar thermal power (14) ethanol (14) fertiliser (14) al gore (13) ambient energy (13) biodiesel (13) brazil (13) carbon emissions (13) cities (13) investment (13) kenya (13) biochar (12) bucky fuller (12) matthew simmons (12) otec (12) public transport (12) texas (12) victoria (12) chile (11) cradle to cradle (11) desertec (11) energy policy (11) internet of things (11) lithium ion batteries (11) terra preta (11) amory lovins (10) fabber (10) gazprom (10) goldman sachs (10) gtl (10) hybrid car (10) severn estuary (10) tinfoil (10) toyota (10) volt (10) alaska (9) biomass (9) carbon trading (9) distributed generation (9) esolar (9) fuel cells (9) jeremy leggett (9) pge (9) sweden (9) afghanistan (8) antarctica (8) arrow energy (8) big oil (8) eroei (8) floating offshore wind power (8) four day week (8) guerilla gardening (8) linc energy (8) methane (8) methane hydrates (8) nanosolar (8) natural gas pipelines (8) pentland firth (8) relocalisation (8) us elections (8) western australia (8) bloom energy (7) boeing (7) chp (7) climategate (7) copenhagen (7) fish (7) stirling engine (7) vinod khosla (7) airborne wind turbines (6) apocaphilia (6) bolivia (6) ceramic fuel cells (6) cigs (6) futurism (6) jatropha (6) local currencies (6) nigeria (6) ocean acidification (6) saul griffith (6) scenario planning (6) somalia (6) t boone pickens (6) space based solar power (5) varanus island (5) garbage (4) kevin kelly (4) low temperature geothermal power (4) oled (4) tim flannery (4) v2g (4) club of rome (3) global energy grid (2) norman borlaug (2) peak oil portfolio (1)