An Electrifying Startup  

Posted by Big Gav in , , ,

Technology Review has a look at A123 Systems' new lithium ion battery which they think could "help electric cars and hybrids come to dominate the roads".

It is the quickest electric motorcycle in the world. On a popular YouTube video, the black dragster cycle nearly disappears in a cloud of smoke as the driver does a "burn-out," spinning the back wheel to heat it up. As the smoke drifts away, the driver settles into position and hits a switch, and the bike surges forward, accelerating to 60 miles per hour in less than a second. Seven seconds later it crosses the quarter-mile mark at 168 miles per hour--quick enough to compete with gas-powered dragsters.

What powers the "Killacycle" is a novel lithium-ion battery developed by A123 Systems, a startup in Watertown, MA--one of a handful of companies working on similar technology. The company's batteries store more than twice as much energy as nickel-metal hydride batteries, the type used in today's hybrid cars, while delivering the bursts of power necessary for high performance. A radically modified version of the lithium-ion batteries used in portable electronics, the technology could jump-start the long-sputtering electric-vehicle market, which today represents a tiny fraction of 1 percent of vehicle sales in the United States. A123's batteries in particular have attracted the interest of General Motors, which is testing them as a way to power the Volt, an electric car with a gasoline generator; the vehicle is expected to go into mass production as early as 2010.

In the past, automakers have blamed electric vehicles' poor sales on their lead-acid or nickel-metal hydride batteries, which were so heavy that they limited the vehicles' range and so bulky that they took up trunk space. While conventional lithium-ion batteries are much lighter and more compact, they're not cost effective for electric vehicles. That's partly because they use lithium cobalt oxide electrodes, which can be unstable: batteries based on them wear out after a couple of years and can burst into flame if punctured, crushed, overcharged, or overheated. Some auto­makers have tried to engineer their way around these problems, but the results have been expensive.

A123's batteries could finally make lithium-ion technology practical for the auto industry. Instead of cobalt oxide, they use an electrode material made from nanoparticles of lithium iron phosphate modified with trace metals. The resulting batteries are unlikely to catch fire, even if crushed in an accident. They are also much hardier than conventional lithium-ion batteries: A123 predicts that they will last longer than the typical lifetime of a car.


Is there enough lithium available in the world for lithium batteries to become common as a transport power source?

See, for example:

I've vaguely considered this topic a few times - I don't think the answer is definitive yet.

I've seen some commenters note that there seems to be abundant lithium in some ocean floor ridges - though whether or not that could ever be extracted is open to question..

There is a whole blog on the concept of abundant lithium - make of it what you will (I've just briefly skimmed the front page and don't have an opinion on it) :

Post a Comment


Locations of visitors to this page

blogspot visitor
Stat Counter

Total Pageviews




Blog Archive


australia (605) global warming (381) solar power (366) peak oil (335) renewable energy (232) electric vehicles (212) wind power (182) ocean energy (161) csp (153) geothermal energy (143) solar thermal power (140) smart grids (139) tidal power (136) coal seam gas (129) nuclear power (125) oil (124) energy storage (122) solar pv (120) lng (115) china (112) geothermal power (112) iraq (111) green buildings (108) natural gas (107) agriculture (88) oil price (79) biofuel (77) smart meters (72) wave power (70) electricity grid (66) uk (66) energy efficiency (63) coal (57) google (57) internet (51) bicycle (49) shale gas (49) surveillance (49) food prices (48) big brother (47) thin film solar (42) canada (40) biomimicry (39) scotland (38) ocean power (37) politics (37) new zealand (35) shale oil (35) air transport (34) algae (34) water (34) concentrating solar power (32) queensland (32) california (31) credit crunch (31) saudi arabia (31) tesla (31) bioplastic (30) offshore wind power (29) population (29) cogeneration (28) geoengineering (28) arctic ice (26) batteries (26) drought (26) resource wars (26) woodside (26) bruce sterling (25) censorship (25) cleantech (25) ctl (23) economics (22) limits to growth (21) carbon tax (20) coal to liquids (20) distributed manufacturing (20) indonesia (20) iraq oil law (20) lithium (20) origin energy (20) brightsource (19) buckminster fuller (19) rail transport (19) ultracapacitor (19) santos (18) ausra (17) exxon (17) michael klare (17) cellulosic ethanol (16) collapse (16) electric bikes (16) mapping (16) ucg (16) atlantis (15) bees (15) concentrating solar thermal power (15) ethanol (15) geodynamics (15) iceland (15) psychology (15) brazil (14) fertiliser (14) lithium ion batteries (14) al gore (13) ambient energy (13) biodiesel (13) bucky fuller (13) carbon emissions (13) cities (13) investment (13) kenya (13) matthew simmons (13) public transport (13) biochar (12) chile (12) internet of things (12) otec (12) texas (12) victoria (12) cradle to cradle (11) desertec (11) energy policy (11) hybrid car (11) terra preta (11) amory lovins (10) fabber (10) gazprom (10) goldman sachs (10) gtl (10) severn estuary (10) tinfoil (10) toyota (10) volt (10) afghanistan (9) alaska (9) biomass (9) carbon trading (9) distributed generation (9) esolar (9) four day week (9) fuel cells (9) jeremy leggett (9) pge (9) sweden (9) antarctica (8) arrow energy (8) big oil (8) eroei (8) fish (8) floating offshore wind power (8) guerilla gardening (8) linc energy (8) methane (8) methane hydrates (8) nanosolar (8) natural gas pipelines (8) pentland firth (8) relocalisation (8) saul griffith (8) stirling engine (8) us elections (8) western australia (8) airborne wind turbines (7) bloom energy (7) boeing (7) bolivia (7) chp (7) climategate (7) copenhagen (7) vinod khosla (7) apocaphilia (6) ceramic fuel cells (6) cigs (6) futurism (6) jatropha (6) local currencies (6) nigeria (6) ocean acidification (6) scenario planning (6) somalia (6) t boone pickens (6) space based solar power (5) varanus island (5) garbage (4) global energy grid (4) kevin kelly (4) low temperature geothermal power (4) oled (4) tim flannery (4) v2g (4) club of rome (3) norman borlaug (2) peak oil portfolio (1)