Power Falling From The Sky  

Posted by Big Gav in ,

Plenty Magazine has an article on harvesting power from raindrops - not a large scale power source of course, but suitable for powering sensors and other small devices.

Scientists from Europe’s Atomic Energy Commission, in Grenoble, France, have shown that vibrations from raindrops landing on a certain type of plastic can generate enough energy to operate some low-power wireless sensors, like battery-powered outdoor thermometers. But the results, published in the February issue of the journal Smart Materials and Structures, could do much more than save you the inconvenience of replacing a drained battery in your outdoor thermometer. The findings could help improve networks of wireless sensors that measure conditions like temperature, pressure, or the presence of pollutants. By continually monitoring the environment, these networks provide early warning systems for dangerous air quality, severe storms, or disease outbreaks. Networks that exist now use batteries that require annual replacement. To be completely reliable—not to mention sustainable—sensor networks would have to power themselves.

To address this shortfall, researchers have focused their efforts on capturing and storing energy from the environment. For example, solar-powered sensors are sometimes connected to a battery that stockpiles power collected by the cells in the daytime. But solar cells only work on clear, sunny days. That’s why it’s essential to find more ways to match sensors to the environments they monitor. “People think of light and wind when they think of free energy,” says Jean-Jacques Chaillout, one of the paper’s authors. “But there is much more out there. There is no one answer for powering sensors.”

To make electricity in rainy locales, Chaillout’s team is using a piezoelectric material—in this case, a plastic—that translates mechanical energy from the impact of the raindrop into electric energy that powers a sensor. During a rainstorm, the material dribbles electrical energy to a battery, storing it for later use. The scientists examined raindrops that range in diameter from a 1-millimeter drizzle to the 5-millimeter drops dumped in a downpour. Their experiments suggest they can collect up to 12.5 milliwatts of instantaneous power from one large droplet; you’d need nearly 5,000 of these drops to light up a 60-watt bulb, but the sensors require only a fraction of that power.

Piezoelectric sensors are already in use. Some cars use them to trigger airbags. Other devices capture vibrational energy from ocean waves and humans—including backpack-wearers, people pushing turnstiles, and pedestrians climbing stairs.

0 comments

Post a Comment

Statistics

Locations of visitors to this page

blogspot visitor
Stat Counter

Total Pageviews

Ads

Books

Followers

Blog Archive

Labels

australia (619) global warming (423) solar power (397) peak oil (355) renewable energy (302) electric vehicles (250) wind power (194) ocean energy (165) csp (159) solar thermal power (145) geothermal energy (144) energy storage (142) smart grids (140) oil (139) solar pv (138) tidal power (137) coal seam gas (131) nuclear power (129) china (120) lng (117) iraq (113) geothermal power (112) green buildings (110) natural gas (110) agriculture (91) oil price (80) biofuel (78) wave power (73) smart meters (72) coal (70) uk (69) electricity grid (67) energy efficiency (64) google (58) internet (50) surveillance (50) bicycle (49) big brother (49) shale gas (49) food prices (48) tesla (46) thin film solar (42) biomimicry (40) canada (40) scotland (38) ocean power (37) politics (37) shale oil (37) new zealand (35) air transport (34) algae (34) water (34) arctic ice (33) concentrating solar power (33) saudi arabia (33) queensland (32) california (31) credit crunch (31) bioplastic (30) offshore wind power (30) population (30) cogeneration (28) geoengineering (28) batteries (26) drought (26) resource wars (26) woodside (26) censorship (25) cleantech (25) bruce sterling (24) ctl (23) limits to growth (23) carbon tax (22) economics (22) exxon (22) lithium (22) buckminster fuller (21) distributed manufacturing (21) iraq oil law (21) coal to liquids (20) indonesia (20) origin energy (20) brightsource (19) rail transport (19) ultracapacitor (19) santos (18) ausra (17) collapse (17) electric bikes (17) michael klare (17) atlantis (16) cellulosic ethanol (16) iceland (16) lithium ion batteries (16) mapping (16) ucg (16) bees (15) concentrating solar thermal power (15) ethanol (15) geodynamics (15) psychology (15) al gore (14) brazil (14) bucky fuller (14) carbon emissions (14) fertiliser (14) matthew simmons (14) ambient energy (13) biodiesel (13) investment (13) kenya (13) public transport (13) big oil (12) biochar (12) chile (12) cities (12) desertec (12) internet of things (12) otec (12) texas (12) victoria (12) antarctica (11) cradle to cradle (11) energy policy (11) hybrid car (11) terra preta (11) tinfoil (11) toyota (11) amory lovins (10) fabber (10) gazprom (10) goldman sachs (10) gtl (10) severn estuary (10) volt (10) afghanistan (9) alaska (9) biomass (9) carbon trading (9) distributed generation (9) esolar (9) four day week (9) fuel cells (9) jeremy leggett (9) methane hydrates (9) pge (9) sweden (9) arrow energy (8) bolivia (8) eroei (8) fish (8) floating offshore wind power (8) guerilla gardening (8) linc energy (8) methane (8) nanosolar (8) natural gas pipelines (8) pentland firth (8) saul griffith (8) stirling engine (8) us elections (8) western australia (8) airborne wind turbines (7) bloom energy (7) boeing (7) chp (7) climategate (7) copenhagen (7) scenario planning (7) vinod khosla (7) apocaphilia (6) ceramic fuel cells (6) cigs (6) futurism (6) jatropha (6) nigeria (6) ocean acidification (6) relocalisation (6) somalia (6) t boone pickens (6) local currencies (5) space based solar power (5) varanus island (5) garbage (4) global energy grid (4) kevin kelly (4) low temperature geothermal power (4) oled (4) tim flannery (4) v2g (4) club of rome (3) norman borlaug (2) peak oil portfolio (1)